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izontal curve signing handbook (6). Persaud et al. stated that motor 
vehicle crashes happen more frequently and are more severe on hori-
zontal curves (5). Therefore, improving safety at horizontal curves is 
an essential part of an  overall safety management plan.

Although there has been considerable research in the past into 
safety at horizontal curves, data availability and quality have been 
the Achilles’ heel of many studies. Furthermore, there is added sig-
nificance to the subject of safety at horizontal curves in view of the 
changes in the latest Manual on Uniform Traffic Control Devices 
with respect to traffic control devices at horizontal curves. There is 
a need for renewed research into the safety of horizontal curves with 
respect to geometric features and traffic control devices, specifically 
curve warning signs, to gain more insight and understanding into 
this critical safety problem.

Objective

The objective of this research was to evaluate the safety of horizon-
tal curves through crash prediction models pertaining to a number 
of geometric characteristics. There were two main focus areas. The 
first focus was on the collection of a good-quality, large data set to 
enable an accurate and detailed investigation. The emphasis was on 
the quality and comprehensiveness of the data, which would allow 
the exploration of the safety impacts of a number of individual geo-
metric features and give the results added significance. The use of 
a large data set would provide a better chance that accurate models 
would be developed to predict safety at horizontal curves.

The second focus area was to evaluate the safety performance of 
horizontal curves with respect to a number of geometric features 
and sign data, specifically curve and turn signs. The aim was to use 
the most relevant variables to develop crash prediction models and 
gain an understanding into the specific contributions of the indi-
vidual variables, which would provide crucial information on safety 
and design guidelines for horizontal curves.

Literature review

Past literature shows that safety at horizontal curves has been studied 
from a number of perspectives. However, certain crash statistics have 
influenced the nature of the research undertaken. For example, the 
primary focus has been on two-lane rural roads; about 75% of all 
curve-related fatal crashes occur in rural areas, and more than 70% 
are on two-lane secondary highways, which are mostly local roads 
(7, 8). The use of only rural or two-lane road data can reduce the data 
set by excluding other types of roads that may provide crucial infor-
mation on the interactions between crashes and curve geometric 
features, regardless of the severity of the crashes. Therefore, there 
is an opportunity in this research to expand the analysis to different 
types of roads.
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Although the safety of horizontal curves has been researched, data avail-
ability and quality have been the Achilles’ heel of many studies. Further-
more, safety at horizontal curves has become more significant in view of 
the changes in the latest Manual on Uniform Traffic Control Devices with 
respect to traffic control devices at horizontal curves. The objective of 
this research was to evaluate the safety of horizontal curves through the 
use of curve geometric characteristics and sign data. The focus was on  
collecting a good-quality large data set to develop models and explore 
the relationship between safety at horizontal curves and sign types, spe-
cifically curve and turn signs. The data set included curves on different 
types of roads to determine the difference in safety characteristics that 
had not been examined in the literature. The crash prediction models 
displayed highly significant variables, which showed a positive relation-
ship with annual average daily traffic, posted speed, and curve length, 
and a negative relationship with curve radius. The results show that 
sharper curves (Classes B–F) on two-lane roads are less safe than curves 
on freeways and multilane and urban roads. However, further investiga-
tion is required into the safety characteristics of Class A curves on free-
ways and multilane roads, compared with two-lane roads. Moreover, 
sign usage was not found to be a significant factor for sharper curves, 
which suggests that, regardless of the presence of the curve or turn sign, 
other influencing factors take over. The crash prediction model results 
provided greater detail and identified variables with large significance.

Horizontal curves are a necessary and important element of high-
ways because the curves provide a gradual change in direction. How-
ever, the curves are also likely to cause safety hazards to road users 
because of the changes in driver expectancy and vehicle handling. 
Approximately 25% of all fatal crashes in the United States in 2002 
occurred on horizontal curves (1, 2). The average crash rate for hori-
zontal curves is about three times the average crash rate for highway 
tangents (2). Schneider et al. provided two explanations from a driver 
awareness perspective: the driver may be unaware of the approaching 
horizontal curve, or the driver may underestimate the radius or sharp-
ness of the curve (3). In another study, Schneider et al. stated that 
horizontal curves may reduce the driver’s available sight distance and 
vehicle-handling capabilities (4). Persaud et al. categorized the expo-
sure to crashes into two categories: road departure to the outside of the 
curve and cross-median crashes into the opposite lane (5). Research 
also indicates that there is a greater propensity for severe crashes at 
horizontal curves, as stated in the Texas Transportation Institute’s hor-
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Literature shows that run-off-the-road and head-on crashes 
accounted for 87% of all fatal crashes at horizontal curves (2). 
Another report states that 76% of the curve-related fatal crashes 
involve single vehicles leaving the roadway and striking roadside 
objects, such as trees, utility poles, or rocks (7). The effect of geo-
metric features, such as shoulder width, may contribute signifi-
cantly to safety at horizontal curves—an area that has not seen much 
research in the literature.

Factors that influence Horizontal curve Safety

Intensive research has been conducted to investigate the correlation 
between crash frequency and severity and the geometric parameters 
of curves. Some key factors and research findings are summarized 
in Table 1.

Horizontal curve crash Prediction Models

Several studies have focused on the development of crash prediction 
models for horizontal curves, predominantly through the use of gen-
eralized linear models. Caliendo et al. developed a crash prediction 
model based on four-lane, median-divided roads in Italy using the 
average daily traffic (ADT), the curve length, the intersection pres-
ence, and the radius as factors (15). Schneider et al. developed a model 
for truck crashes on horizontal curves through the use of length, the 
truck ADT, the passenger vehicle ADT, and the degree of curvature 
(3). Persaud et al. developed a model that included the annual average 
daily traffic (AADT), the length of the curve, and the curve radius as 
parameters (5). The results of the abovementioned studies indicated 
a positive relationship between crashes, ADT, and curve length and a 
negative relationship between crashes and curve radius.

A different set of studies have focused on the development of 
crash modification factors for horizontal curves. Bonneson et al. and 
Bonneson and Pratt developed horizontal curve crash modification 
factors for multilane highways through the use of radius and speed 
limit data (16, 17). Fitzpatrick et al. developed a crash modification 

factor for freeways by using only the degree of curvature as an inde-
pendent variable and assuming zero degrees as the base condition 
(18). The Highway Safety Manual also provides a crash modifica-
tion factor for horizontal curves; however, the standard error values 
are unknown, which makes the results unreliable (19).

The literature review results, with regards to crash prediction 
models and factors, showed the use of a limited number of variables 
to gain an understanding of safety at horizontal curves. Therefore, 
there is a need to conduct research that includes additional factors 
(posted speed, road types, signs, etc.) and a larger data set.

Horizontal curve warning Signs

The previous version of the Manual on Uniform Traffic Control 
Devices (2003) provided guidelines on the usage of turn and curve 
signs based on engineering judgment at horizontal curve locations 
(20). The latest version (2009) provides standards on the placement 
of such signs based on speed differentials and directs states to comply 
with the standards in the coming years (21). In view of these changes, 
and the limited research on sign usage at horizontal curves, there is a 
need to explore past usage of warning signs to understand the effects of 
the changes in the standards on the future safety of horizontal curves.

Data cOLLectiOn anD PrOceSSing

This research emphasized putting together a thorough and high-quality 
data set. Data were collected and merged from a number of sources 
at the Wisconsin Department of Transportation (DOT), details of 
which are described in the following sections.

Horizontal curve Data

The Wisconsin DOT maintains horizontal curve information col-
lected from the Wisconsin DOT photo log data set that detects 
changes in the horizontal alignment through the use of automated 

TABLE 1  Summary of Literature Review: Factors That Influence Horizontal Curve Safety

Author Factor Summary

Zegeer et al. (9) Curve radius and  
degree of curvature

A 500-ft radius curve is 200% more likely to produce a crash than an equivalent tangent section, and a 
1,000-ft radius curve is 50% more likely to produce a crash than an equivalent tangent section.

Schneider et al. (3, 4) When curves become sharper, the model predicts an increase in truck crashes on horizontal curves. The 
radius and degree of curvature significantly influence motorcycle crashes on horizontal curves.

Transportation Research 
Circular E-C033 (10)

The degree of curvature and radius are significant variables influencing crash rate on horizontal curves. 

Council (11) Crash rates increase as the degree of curvature increases.

Miaou and Lum (12) Truck crash involvement increases as horizontal curvature (degree of curvature) increases.

Schneider et al. (4), 
Zegeer et al. (13) 

Curve length 
 

Curve length is a significant factor for truck crash involvement. A horizontal curve with a length of 
31 m (100 ft) and a radius of 31 m (100 ft) on a roadway segment would be expected to have an 
 accident rate of more than 28 times as high as a tangent section on the same roadway.

Schneider et al. (3, 4) Traffic volume The increase in passenger vehicle average daily traffic (ADT) is associated with an increase in truck 
crashes on curves. The total ADT also affects motorcycle crashes on curves.

Schneider et al. (4), 
Zegeer et al. (13)

Shoulder width Shoulder width is a significant variable that affects crashes on curves. 

Hallmark et al. (14) Tangent length 
before curve

Crash rates on curves with long preceding tangent lengths will be more dangerous when the curve is 
located on a downgrade of 5% or more, and if the tangent lengths are more than 200 m.
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algorithms. The Wisconsin DOT photo log data set contains data 
points with accurate mile marker position data at 50-ft intervals on 
the Wisconsin state trunk network (STN) roads. The horizontal curve 
data included attribute information, such as radius, degree of curva-
ture, length, route, county, and the mile marker for the start and end 
point of each curve. The data were mapped with the photo log lane 
mile routes, which were created to enable the integration of photo 
log–based data with other Wisconsin DOT geographic  information 
system (GIS) databases (22).

For data analysis, the horizontal curve location was selected as the 
spatial unit of analysis for which other data elements and attributes 
would be collected and assembled. However, as a result of the large 
number of horizontal curves on STN roads in Wisconsin, the data set 
was trimmed with reasonable assumptions. There were two options 
available in this respect. The first option was to select horizontal 
curves based on a reasonable value of radius, because curves with 
a very large radius (e.g., greater than 10,000 ft) would probably not 
have significant impacts on horizontal curve safety because of their 
geometry. Moreover, such horizontal curves did not  experience any 
curve-related crashes because of their very large radii.

The second criterion was based on the degree of curvature, which 
was used to classify curves into the following classes (23):

1. Class A (0.0° to 3.45°),
2. Class B (3.45° to 5.45°),
3. Class C (5.45° to 8.45°),
4. Class D (8.45° to 13.95°),
5. Class E (13.95° to 27.95°), and
6. Class F (27.95° to infinity).

The idea was to use only Class B–F curves (the maximum radius 
of Class B curves was approximately 1,660 ft) because they captured 
a large enough data set and excluded the less sharp, and potentially 
less critical, larger-radius Class A curves.

In this research, both criteria were used so that the results from the 
two data sets could be compared and contrasted. The two data sets 
were named Data Set 1 and Data Set 2. Figure 1 shows a flowchart 
that describes the two data sets, and Table 2 presents the descriptive 
statistics of the relevant parameters in the two data sets (continu-
ous variables only). Once the two data sets had been assembled, 
data from additional sources were associated with each horizontal 
curve record to obtain information on additional variables, which 
are described in Figure 1 and the paper’s subsequent sections.

Data Sets 1 and 2 were further subdivided into Data Sets 1B 
and 2B, as shown in Figure 1, based on the presence of a turn or 
curve sign. In other words, Data Sets 1B and 2B were subsets of 
Data Sets 1 and 2, respectively, based on the presence of a turn or 
curve sign.

crash Data

Crash data were obtained for 5 years, between 2005 and 2009, 
on Wisconsin STN roads. A 300-ft buffer around the horizontal 
curves was specified to capture the crashes that may have ended 
outside the proximity of the curves. The resulting data set was 
further filtered to remove deer- or other animal-related crashes, 
crashes at ramps and gore, and intersection crashes. The final 
data set consisted of 11,224 crashes, which were mapped in GIS 
to locate the crashes on individual horizontal curves. The crash 
location, as documented by the reporting officer, was identified 

from the Wisconsin DOT MV4000 crash reporting form, with an 
intended accuracy of 0.01 mi.

geometric Data

The geometric characteristics of the horizontal curve locations were 
obtained from the MetaManager road data set, which contains a 
large number of attributes related to safety, mobility, traffic fore-
casts, and so forth. The most relevant variables were selected to 
analyze horizontal curve safety, and data were checked for errors 
and missing elements. MetaManager also contains traffic volume 
data in the form of AADT. The MetaManager data were available in 
GIS, enabling seamless integration with the other data set.

Sign Data

The Wisconsin DOT maintains a database of all signs on STN roads 
in its Sign View database. The database contains information on 
several types of signs and their locations. However, the data are not 
readily integrated with the Wisconsin DOT STN database. There-
fore, the Sign View data were mapped with the photo log lane mile 
routes to enable integration with the other data set (22). For the pur-
pose of this research, the focus was only on turn (W1-1) and curve 
(W1-2) signs to explore the relationship between the use of the two 
signs and safety at horizontal curves.

StatiSticaL MetHODOLOgy

Poisson Model Form

The basic form of the Poisson regression model is

log ( )µ β β β βi n nx x x( ) = + + + +0 1 1 2 2 1�

where

 µi =  expected number of crashes on the ith horizontal 
curve,

 β0 = constant,
 β1, . . . , βn = estimated parameters, and
 x1, . . . , xn =  explanatory variables that influence crashes on the 

ith horizontal curve.

Poisson regression is traditionally used because of its simplicity, 
but the constraint on the equality of the mean and the variance has 
driven many researchers to consider negative binomial regression 
instead. In practice, the Poisson model is often useful for describing 
the mean but underestimates the variance in the data, rendering all 
model-based tests liberal.

Quasi-Poisson Model

One way of dealing with the traditional restrictions of the Poisson 
model is to use the same estimating functions for the mean but to 
base the inference on the more robust quasi-Poisson regression. 
Quasi-Poisson uses the mean regression function and the variance 
function from the Poisson generalized linear model but leaves the 
dispersion parameter unrestricted. Thus, the dispersion parameter 
is not assumed to be fixed at one but is estimated from the data. 
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FIGURE 1  Development process and description of horizontal curve (H. curve) data set for crash  
prediction models (HCM = Highway Capacity Manual).

This strategy leads to the same coefficient estimates as the standard 
Poisson model, but the inference is adjusted for overdispersion. 
Consequently, quasi-Poisson does not correspond to models with 
fully specified likelihoods and its Akaike’s information criterion 
(AIC) does not have the traditional meaning.

negative binomial Model

Another way to model overdispersed count data is to assume nega-
tive binomial distribution for which there can be a gamma mixture 

of Poisson distributions. One parameterization of its probability 
density function is
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with mean µ and shape parameter θ; Γ( ) is the gamma function. It 
has variance V(µ) = µ + µ2/θ. When θ goes to infinity, the negative 
binomial approaches a Poisson distribution.
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akaike’s information criterion

The AIC is a measure of the relative goodness of fit of a statistical 
model, which loosely describes the trade-off between the accuracy 
and the complexity of the model. In the general case, the AIC is

AIC = − ( )2 2k Lln

where k is the number of parameters in the statistical model, and L 
is the maximized value of the likelihood function for the estimated 
model.

cross validation

Cross validation is a method to estimate how accurately a predic-
tive model will perform in practice. One round of cross validation 
involves partitioning a sample of data into complementary subsets, 
performing the analysis on one subset (the training set), and vali-
dating the analysis on the other subset (the testing set). To reduce 
variability, multiple rounds of cross validation are performed with 
different partitions, and the validation results are averaged over all 
the replications.

variance inflation Factor

The variance inflation factor (VIF) quantifies the severity of multi- 
collinearity in regression analysis by calculating a factor by 
which variance in the regression coefficient is inflated as a result 
of multi collinearity (24). Generally, a VIF value of greater than 
four requires a further review of the coefficients, and a value 
greater than 10 is considered to be an indication of serious  
multicollinearity (24).

MODeL DeveLOPMent, reSuLtS, 
anD DiScuSSiOnS

The availability of a large and rich data set enabled horizontal curve 
safety to be analyzed using four data sets, as described in Figure 1. 
The objective was to develop crash prediction models to explore 
and analyze geometric features and turn and curve sign data through 
statistical analysis. Poisson and negative binomial models were 
both fitted with the R generalized linear model framework (25).

The process of model development started with the specification 
of a base model, and the final crash prediction models were gener-
ated based on the results of stepwise regression that used AIC as 
the model selection criteria. The models were updated at every step 
by adding or removing variables and checking for the smallest AIC 
values. The final Poisson model was refitted with the quasi-Poisson 
method to get the adjusted standard errors and significance levels. 
The quasi-Poisson and negative binomial models were compared 
with each other with fivefold cross validation. Based on the cross 
validation score and the ease of interpretation, the negative binomial 
models were selected as the best models to be used in the final results. 
Finally, the VIF test was performed for each of the models to check 
for multicollinearity in the regression coefficients, and the models 
were modified accordingly to remove the correlated variables.

Development of crash Prediction Models  
with geometric Data

Data Set 1 and Data Set 2 were assembled with the aim of analyz-
ing geometric parameters related to safety on horizontal curves. 
The data set consisted of more than 12,000 curves on the Wiscon-
sin STN associated with continuous and categorical variables, as 
shown in Figure 1 (categorical variables) and Table 2 (continuous 
variables). The crash prediction models developed for horizontal 
curves showed the curve radius, the curve length, and the natural 
log of the AADT to be significant variables (p < .0001) in all 
models, along with other variables. The results showed that crashes 
increased with a decrease in radius, an increase in curve length, 
and an increase in AADT, which was in line with the findings in 
the literature. However, the strength of the model and the param-
eters was what made the model findings interesting, as described 
in a later section. The coefficients were in the correct direction and 
reasonable in magnitude.

Modeling Crash Counts with Geometric Data  
for Horizontal Curves (Data Set 1)

The results of the negative binomial crash prediction models, which 
used Data Set 1 (Class A–F curves), are shown in Table 3 (Equation 3) 
and Table 4 (Equation 4), where R is the radius of the curve; L is 
the length of the curve; PS is the posted speed; F, M, and U denote 
freeway, multilane, and urban, respectively; RSW is the right 
shoulder width; and LSW is the left shoulder width. The difference 
between the two models is the use of the Highway Capacity Manual 
(HCM)–type variable, which is present in the model in Table 3 and 
is replaced with the posted speed variable in the model in Table 4 
(26). The reason for developing separate models based on the HCM 
type and posted speed variables was the multicollinearity in the 
two variables, which was confirmed with a VIF test (HCM-type  
VIF = 8.5; posted speed VIF = 3.5). However, because both of the 

TABLE 2  Descriptive Statistics of Parameters

Variable Mean Median SD

Descriptive Statistics of Relevant Parameters (Data Set 1)

Curve length (ft) 974.3 770.4 678.6

Curve radius (ft) 2,908.0 2,330.2 1,983.8

AADT (vpd) 6,652.1 3,200.0 12,780.3

Posted speed (mph) 52.8 55.0 8.2

Left shoulder width (ft) 5.6 6.0 3.2

Right shoulder width (ft) 6.1 6.0 3.5

Number of crashes 0.9 0.0 1.9

Descriptive Statistics of Relevant Parameters (Data Set 2)

Curve length (ft) 828.9 691.4 462.1

Curve radius (ft) 1,082.6 1,166.9 414.6

AADT (vpd) 4,368.2 1,860.0 7,683.1

Posted speed (mph) 50.2 55.0 10.0

Left shoulder width (ft) 4.2 4.0 3.1

Right shoulder width (ft) 4.4 4.0 3.2

Number of crashes 1.3 1.0 2.1

Note: vpd = vehicles per day; SD = standard deviation.
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variables were important, they were included in separate models 
because one of the contributions of this research was the inclusion 
of different types of roadway (HCM type) instead of restricting the 
data set to only rural or two-lane roads. Freeways and multilane 
roads were combined as one level in the HCM-type variable (repre-
senting rural locations) because of the relatively small sample size, 
as shown in Figure 1.

µi R L= − − + +[exp . . . .

l

3 872 0 000422 0 000467 0 556� �

� nn . . . ( )AADT RSW( ) + − − ]0 507 0 812 0 049 3� � �FM U

µi R L= − − + +[exp . . . .

l

5 670 0 000425 0 000459 0 558� �

� nn . . ( )AADT PS LSW( ) + − ]0 032 0 037 4�

The results of the models are presented in Table 3 (Equation 3) 
and Table 4 (Equation 4) and show that the HCM type and posted 
speed variables are significant. More crashes are expected on free-
way and multilane roads (rural), and fewer crashes are expected on 
urban roads, compared with the base condition of two-lane roads; 
this finding was very interesting because the expectation was that 
freeways, which generally have higher speed limits, are safer than 
two-lane roads. A possible explanation could be that the safety char-
acteristics of Class A curves (many of which are on freeway and 
multilane roads) included in Data Set 1 are more closely related to 
straight segments of road on which other factors take over, rather 
than horizontal curvature. The results of Data Set 2 could provide 

some insight in this regard. The right shoulder width is replaced by 
the left shoulder width between the two models, which warrants fur-
ther investigation into the relationship and interaction between the 
two variables. The coefficients of the common variables between 
the models in Table 3 and Table 4 are similar, signifying the stability 
of the model. Therefore, both the models are useful in an estimation 
of crashes on horizontal curves that uses different sets of variables.

Modeling Crash Counts with Geometric Data  
for Horizontal Curves (Data Set 2)

The results of the negative binomial crash prediction models that 
used Data Set 2 (Class B–F curves) are shown in Table 5 (Equation 5) 
and Table 6 (Equation 6). The difference between the two models is 
the use of the HCM type variable, which is present in the model in 
Table 5 and is replaced with posted speed in the model in Table 6.

µi R L= − − + +[exp . . . .

l

3 722 0 000561 0 000561 0 569� �

� nn . . . ( )AADT RSW( ) − − − ]0 359 0 954 0 052 5� � �FM U

µi R L= − − + × +[exp . . . .

l

4 137 0 000520 0 000560 0 448�

� nn . . ( )AADT PS RSW( ) + − ]0 02 0 024 6�

The results of the models in Table 5 (Equation 5) and Table 6 
(Equation 6) show that the HCM type and posted speed variables 
are both significant. However, compared with the model results 

TABLE 3  Negative Binomial Regression Results for Data Set 1 
with HCM Type

Variable Estimate SE z-Value Pr(>z)

Constant −3.872 0.135 −28.674 0.000

Curve radius (ft) −4.222 E–04 0.000 −40.130 0.000

Curve length (ft) 4.677 E–04 0.000 24.573 0.000

Log of AADT 0.556 0.019 29.032 0.000

HCM type:  
freeway and 
multilane

0.507 
 

0.054 
 

9.350 
 

0.000 
 

HCM type: urban −0.812 0.066 −12.289 0.000

Right shoulder 
width (ft)

−0.049 0.006 −8.303 0.000 

Note: SE = standard error.

TABLE 4  Negative Binomial Regression Results for Data Set 1 
with Posted Speed

Variable Estimate SE z-Value Pr(>z)

Constant -5.670 0.153 -37.009 0.000

Curve radius (ft) -4.253 E–04 0.000 -40.478 0.000

Curve length (ft) 4.591 E–04 0.000 24.096 0.000

Log of AADT 0.558 0.013 42.780 0.000

Posted speed (mph) 0.032 0.002 15.900 0.000

Left shoulder  
width (ft)

-0.037 0.005 -7.385 0.000 

TABLE 5  Negative Binomial Regression Results for Data Set 2 
with HCM Type

Variable Estimate SE z-Value Pr(>z)

Constant -3.722 0.203 -18.331 0.000

Curve radius (ft) -5.619 E–04 0.000 -9.513 0.000

Curve length (ft) 5.610 E–04 0.000 10.922 0.000

Log of AADT 0.569 0.029 19.821 0.000

HCM type:  
freeway and 
multilane

-0.359 
 

0.140 
 

-2.569 
 

0.010 
 

HCM type: urban -0.954 0.094 -10.158 0.000

Right shoulder 
width (ft)

-0.052 0.009 -5.596 0.000 

TABLE 6  Negative Binomial Regression Results for Data Set 2 
with Posted Speed

Variable Estimate SE z-Value Pr(>z)

Constant -4.137 0.280 -14.754 0.000

Curve radius (ft) -5.205 E–04 0.000 -8.806 0.000

Curve length (ft) 5.604 E–04 0.000 10.819 0.000

Log of AADT 0.448 0.023 19.183 0.000

Posted speed (mph) 0.020 0.003 6.663 0.000

Right shoulder 
width (ft)

-0.024 0.008 -2.955 0.003 
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from Data Set 1, the results show a decrease in crashes on freeway 
and multilane roads (rural) and urban roads compared with the base 
condition of two-lane roads. This result is possibly because of higher 
design standards (larger radii curves) on freeway, multilane, and 
urban roads than on two-lane roads. The results were in line with the 
expectation and suggested differences in safety characteristics of 
Class A curves; however, more investigation is required to deduce 
reliable conclusions. Furthermore, as curves become sharper (Data 
Set 2, Class B–F curves), the coefficients of the curve radius and the 
right shoulder width become larger, showing an increased effect of 
the variables. Also, higher posted speeds result in more crashes on 
sharper curves. Right shoulder width is significant in both models, 
indicating its importance in predicting crashes on horizontal curves 
in Data Set 2. The coefficients of the common variables between the 
models in Table 5 and Table 6 are similar, signifying the stability 
of the model.

Development of crash Prediction Models  
with Sign Data

Data Set 1B and Data Set 2B were created as subsets of Data Set 1 
and Data Set 2, respectively, to study the effects of turn and curve 
signs on horizontal curves. The reason for creating the subsets was 
because only a limited number of horizontal curves contained curve 
or turn signs within the larger Data Sets 1 and 2. Figure 1 and Table 2 
show the characteristics and variables of Data Sets 1B and 2B. A 
new variable that represented the type of sign was introduced with 
two levels: W1-1 (turn sign) and W1-2 (curve sign). The HCM-type 
variable was not used in the crash prediction models developed 
with sign data because almost all the curves within the data set were 
located on two-lane roads, which would skew the results.

The crash prediction models developed with sign data to pre-
dict crashes on horizontal curves showed similar results in terms of 
curve radius, length, and AADT having a strong significance level. 
However, the effect of shoulder width was markedly decreased. 
The use of sign data was a unique aspect of this research, aimed 
at investigating the relationship between turn and curve signs and 
horizontal curve safety.

Modeling Crash Counts with Sign Data  
for Horizontal Curves (Data Set 1B)

The results of the negative binomial crash prediction models that 
used Data Set 1B (Class A–F curves) are shown in Table 7 (Equa-
tion 7), where W1-2 is a curve sign. The initial model contained left 
and right shoulder width variables with very high VIF values, show-

ing a high correlation (right shoulder width VIF = 8.6; left shoulder 
width VIF = 7.9). Therefore, the left shoulder width variable was 
removed from the model. The VIF values did not show any correla-
tion between the radius and the curve or turn sign (radius VIF = 1.3; 
turn or curve sign VIF = 1.3). The crash prediction model shows the 
sign type as a significant variable, with fewer crashes expected at 
horizontal curve locations with a curve sign compared with a turn 
sign. One logical interpretation of the results is that the engineer’s 
judgment to place a curve versus a turn sign was correct in terms 
of horizontal curves and their propensity for crashes; however, fur-
ther investigation is required. The crash prediction model in Table 7 
shows the right shoulder width as less significant compared with 
previous models.
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Modeling Crash Counts with Sign Data  
for Horizontal Curves (Data Set 2B)

The results of the negative binomial crash prediction model that used 
Data Set 2B (Class B–F curves) are shown in Table 8 (Equation 8). 
The model does not show curve and turn signs as a significant vari-
able, which is an interesting observation. One could argue that 
 engineering judgment becomes more difficult in selecting between 
turn and curve signs and assessing the safety at sharper curves 
(Class B–F curves) compared with less sharp curves (Class A). 
However, any interpretation of the results would require further 
research and analysis specifically taking advisory speed effects 
into consideration. The coefficient of the curve radius has increased 
between the models based on Data Sets 1B and 2B, showing that 
the curve radius has a higher impact on safety at sharper curves 
(Class B–F curves).

µi R L= − − + +[exp . . . .5 407 0 0007330 0 0004717 0 567� �

�� �ln . ( )AADT PS( ) + ]0 033 8

cOncLuSiOnS

Although research on safety at horizontal curves has been conducted 
in the past, the lack of good-quality data has hindered some analyses. 
This research aimed to gather an extensive database that could be 
used to review safety on horizontal curves with respect to geometric 
features, traffic control devices (specifically curve warning signs), 

TABLE 7  Negative Binomial Regression Results for Data Set 1B: 
Sign and Geometric Data

Variable Estimate SE z-Value Pr(>z)

Constant -5.466 0.475 -11.513 0.000

Curve radius (ft) -5.307 E–04 0.000 -11.873 0.000

Curve length (ft) 3.950 E–04 0.000 7.321 0.000

Log of AADT 0.589 0.038 15.518 0.000

Posted speed (mph) 0.033 0.006 5.278 0.000

W1-2 (curve sign) -0.191 0.093 -2.063 0.039

Right shoulder 
width (ft)

-0.019 0.013 -1.504 0.133 

TABLE 8  Negative Binomial Regression Results for Data Set 2B: 
Sign and Geometric Data

Variable Estimate SE z-Value Pr(>z)

Constant -5.407 0.489 -11.056 0.000

Curve radius (ft) -7.330 E–04 0.000 -7.328 0.000

Curve length (ft) 4.717 E–04 0.000 6.265 0.000

Log of AADT 0.567 0.038 14.754 0.000

Posted speed (mph) 0.033 0.006 5.111 0.000
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and crashes to gain further insight and understanding into the criti-
cal safety problem, as well as to analyze curve and turn signs. The 
variables from the crash prediction models have large significance 
and describe the characteristics of the curves in greater detail than in 
previous studies (e.g., using different types of roads, shoulder width, 
and posted speed variables). The crash prediction models can be 
used in safety performance functions for horizontal curves.

The data set included horizontal curves on different types of roads 
to determine the difference in the safety characteristics of horizontal 
curves on different roadways that had not been examined in the liter-
ature. The data show that there is a positive relationship with AADT, 
posted speed, and curve length and that curve radius is negatively 
correlated. The results also show that sharper curves (Class B–F 
curves) on two-lane roads are less safe than curves on freeways 
and multilane and urban roads. However, for Data Set 1 (Class A–F 
curves), the results show that freeways and multilane roads are less 
safe than two-lane roads, which requires further investigation into 
the safety characteristics of Class A curves with large radii.

The comparison between Data Sets 1 and 2 shows that the coef-
ficient for curve radius becomes larger with a data set that contains 
curves of a higher degree of curvature. The models based on Data 
Set 1B show fewer crashes at curves with a curve sign compared with 
a turn sign. However, for sharper curves (Data Set 2B, Class B–F 
curves), sign usage is not a significant factor, which means that on 
sharper curves, regardless of the presence of a turn or a curve sign, 
other influencing factors take over.

Future research needs to examine the effects of other types of 
signs, as well as factors such as cross slope, pavement friction, advi-
sory speed, date of installation, sign material, and size. This future 
research could help in the review of current Manual on Uniform 
Traffic Control Devices guidelines and make recommendations for 
future editions. The substantial database assembled as part of this 
research provides a good foundation for future improvements and 
analyses. With regard to modeling, the types of variables need to be 
further explored, such as whether shoulder width and speed should 
be categorical variables instead of continuous.
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